欧拉方程是对无粘性流体微团应用牛顿第二定律得到的运动微分方程,是无粘性流体动力学中最重要的基本方程,应用十分广泛,在1755年,由瑞士数学家欧拉在《流体运动的一般原理》一书中首先提出这个方程,欧拉方程是泛函极值条件的微分表达式,求解泛函的欧拉方程,即可得到使泛函取极值的驻函数,将变分问题转化为微分问题,在物理学上,欧拉方程统治刚体的转动。
免责声明:本站内容仅用于学习参考,文字信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:chuangshanghai#qq.com(把#换成@)