有理数章节总复习!
一、实数
1.1有理数
1.1.1有理数的定义:整数和分数的统称。
1.1.2有理数的分类:
(1)分为整数和分数。而整数分为正整数、零和负整数 ;分数分为正分数和负分数。
(2)分为正有理数、零和负有理数。而正有理数分为正整数和正分数;负有理数分为负整数和负分数。
1.1.3数轴
1.1.3.1数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
1.1.3.2数轴的三要素:①原点②正方向③单位长度
1.1.3.3每个有理数都能用数轴上的点表示
1.1.4相反数
1.1.4.1相反数的定义:只有符号不同的两个数就做互为相反数(注:0的相反数为0
1.1.4.2相反数的意义:离原点距离相等的两个点所表示的两个数互为相反数
1.1.4.3相反数的判别
(1)若 ,则 、 互为相反数
(2)若两个数的绝对值相等,且符号相反,则这两个数互为相反数。
1.1.5倒数
1.1.5.1倒数的定义:若两个数的乘积等于1,则这两个数互为倒数。(若ab=1 ,则 a、b互为倒数)注:零没有倒数。
1.1.6绝对值
1.1.6.1绝对值的定义:在数轴上,表示一个数到原点的距离(a的绝对值记作∣a∣)
1.1.6.2绝对值的性质:∣a∣≥0
1.1.7有理数大小的比较
1.1.7.1正数大于0,负数小于0
1.1.7.2正数大于负数
1.1.7.3两个正数,绝对值大的这个数就大,绝对值小的这个数就小;两个负数,绝对值大的这个数就小,绝对值小的这个数就大。
1.1.7.4作差法:两个有理数相减。若大于0,则被减数大;若等于0,则两个数相等;若小于0,则减数大。
1.1.7.5作商法:两个有理数相除(除数或分母不为0)。若大于1,则被除数大;若等于1,则两个数相等;若小于1,则除数大。
1.1.8有理数的加法
1.1.8.1运算法则:①符号相同的两个数相加,取相同的符号,并把绝对值相加②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值(互为相反数的两个数相加等于0)③任何有理数加0仍等于这个数。
1.1.8.2加法交换律在有理数加法中仍然适用,即: a+b=b+a
1.1.8.3加法结合律在有理数加法中仍然适用,即: a+(b+c)=(a+b)+c
1.1.9有理数的减法
1.1.9.1运算法则:减去一个数等于加上这个数的相反数
1.1.9.2有理数减法—转化→有理数加法
1.1.10有理数的乘法
1.1.10.1运算法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘(口诀:正正得正,负负得正,正负的负,负正的负)②任何有理数乘0仍等于0③多个不等于0的有理数相乘时,积的符号由负因式的个数决定:当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
1.1.10.2乘法交换律在有理数乘法中仍然适用,即
1.1.10.3乘法结合律在有理数乘法中仍然适用,即
1.1.10.4乘法分配律在有理数乘法中仍然适用,即
1.1.11有理数的除法
1.1.11.1运算法则:除以一个数等于乘上这个数的倒数(除数不能为0,否则无意义)
1.1.11.2有理数除法—转化→有理数乘法
1.1.12有理数的乘方
1.1.12.1有理数乘方的意义:求相同因数积的运算叫做乘方
1.1.12.2有理数乘方的表示方法: 个相同因数 相乘表示为 ,其中 称为底数, 称为指数,而乘方的结果叫做幂,读作“ 的 次方”或“ 的 次幂”(当 =2时,读作 的平方,简称 方)
1.1.12.3运算规律:①正数的任何次幂都为正数②负数的奇次幂是负数,负数的偶次幂是正数③0的任何次幂都等于0(0次幂除外)④任何数的零次幂都等于1(0次幂除外)
1.1.13有理数的混合运算
1.1.13.1运算顺序:①先算乘方(即:三级运算),再算乘除(即:二级运算),最后算加减(即:一级运算)②如果是同级运算,则按从左到右的运算顺序计算③如果有括号,先算小括号,再算中括号,最后算大括号。
1.1.14科学记数法
1.1.14.1科学记数法的定义:把一个大于10的有理数记成 的形式(其中1≤ ≤10)叫做科学记数法。
1.1.15近似数
1.1.15.1近似数的定义:接近准确数而不等于准确数的数叫做这个准确数的近似数或近似值。
1.1.15.2求近似值的方法:①四舍五入法②收尾法(进一法)③去尾法。
1.1.15.3有效数字的定义:一个近似数精确到哪一位,从左起第一个不是0的数字起,到这一位数字上的所有数字(包括其中的0)叫做这个近似值的有效数字。
1.2 实数
1.2.1平方根
1.2.1.1平方根的定义:如果一个数的平方等于 ,这个数就叫做 的平方根(或二次方根),即 ,我们就说 是 的平方根。
1.2.1.2平方根的表示方法:如果 ( >0),则 的平方根 记作 ,“ ”读作“正负根号 ”,其中 读作“二次根号”,2叫做根指数, 叫做被开方数。
1.2.1.3平方根的性质:一个正数的平方根有两个,这两个平方根互为相反数;0的平方根只有一个,就是0;负数没有平方根。
1.2.1.4开平方的定义:求一个数的平方根的运算就叫做开平方(开平方和平方互为逆运算)。
1.2.2算术平方根
1.2.2.1算术平方根的定义:正数 有两个平方根,其中正数a的正的平方根叫做 的算术平方根,记作 ,读作“根号 ”。
1.2.2.2算术平方根的性质:①具有双重非负性,即: ≥0, ≥0② =a( ≥0)③ =∣ ∣,当 ≥0时, =∣ ∣= ;当 ≤0时, =∣ ∣=-
1.2.3立方根
1.2.3.1立方根的定义:如果一个数的立方等于 ,这个数就叫做 的立方根(或叫做 的三次方根)
1.2.3.2立方根的表示方法:如果 ,则x叫做a的立方根,记作 ,其中 叫做被开方数,3叫做根指数。
1.2.3.3立方根的性质:①正数有一个立方根,仍为正数,负数有一个立方根,仍为负数,0的立方根仍为0。②
1.2.3.4开立方的定义:求一个数的立方根的运算叫做开立方(它与立方互为逆运算)
1.2.4无理数
1.2.4.1无理数的定义:无限不循环小数叫做无理数。
1.2.4.2判断无理数的注意事项:①带根号的数不一定是无理数,如 是有理数,而不是无理数;②无理数不一定是开方开不尽的数,如圆周率
1.2.5实数
1.2.5.1实数的定义:有理数和无理数的统称
1.2.5.2实数的性质:①实数与数轴上的点一一对应②实数a的相反数是-a,实数 的倒数是 ( ≠0)③∣ ∣≥0,∣ ∣=∣- ∣④有理数范围内的运算律、幂的运算法则、乘法公式,在实数范围内同样适用
1.2.5.3两个实数的大小比较:①正数大于0,负数小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小。②在数轴上表示的两个数,右边的数总比左边的数大③作商法:两个实数相除(除数或分母不为0)。若大于1,则被除数大;若等于1,则两个数相等;若小于1,则除数大。④作差法:两个有理数相减。若大于0,则
有理数章节总复习!
免责声明:本站内容仅用于学习参考,文字信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:chuangshanghai#qq.com(把#换成@)