取向量b1作为基准向量c1,那么c2就等于b2减去b2和c1的内积除以c1和c1的内积再乘以c1,记住诸侯一定是矩阵的形式。
包括c3等于b3减去b3与c1的内积乘以b1减去c3与b2的内积除以c2与c2的内积乘以c2。
3/6内积,在前面讲的一个行向量乘以一个列向量组最后的结果是一个数也就是内积。如果是一个列向量乘以一个行向量那么结果一定是一个矩阵,但是矩阵的主对角线上的元素的和也就是矩阵的际也等于内积。
4/6***单位化,也就是将上面的c1,c2,c3向量除以内积得到每个向量的单位向量组成的方程组是一个互相正交的矩阵。最后的结果就是施密特正交单位化得到的一定是一个正交矩阵。
免责声明:本站内容仅用于学习参考,文字信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:chuangshanghai#qq.com(把#换成@)