好学网

好学网

微方程通解怎么求

来源:互联网 知识 1

二阶常系数齐次线性微分方程解法:

特征根法是解常系数齐次线性微分方程的一种通用方法。

(1+y)dx-(1-x)dy=0

==>dx-dy+(ydx+xdy)=0

==>∫dx-∫dy+∫(ydx+xdy)=0

==>x-y+xy=C(C是常数)

此方程的通解是x-y+xy=C。

微分方程术语

对一个微分方程而言,它的解会包括一些常数,对于n阶微分方程,它的含有n个独立常数的解称为该方程的通解。二阶常微分方程,在物理中经常会用到,被称作亥姆霍兹方程(Helmholtzequation)。取某个特定值时所得到的解称为方程的特解。例如y=6*cos(x)+7*sin(x)是该方程的一个特解。

求微分方程的通解

抱歉,评论功能暂时关闭!