二阶常系数齐次线性微分方程解法:
特征根法是解常系数齐次线性微分方程的一种通用方法。
(1+y)dx-(1-x)dy=0
==>dx-dy+(ydx+xdy)=0
==>∫dx-∫dy+∫(ydx+xdy)=0
==>x-y+xy=C(C是常数)
此方程的通解是x-y+xy=C。
微分方程术语
对一个微分方程而言,它的解会包括一些常数,对于n阶微分方程,它的含有n个独立常数的解称为该方程的通解。二阶常微分方程,在物理中经常会用到,被称作亥姆霍兹方程(Helmholtzequation)。取某个特定值时所得到的解称为方程的特解。例如y=6*cos(x)+7*sin(x)是该方程的一个特解。
免责声明:本站内容仅用于学习参考,文字信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:chuangshanghai#qq.com(把#换成@)