极坐标的形式表示:r=1+cosθ
在笛卡儿坐标系中,心脏线的参数方程为:x(t)=a(2cost-cos2t)y(t)=a(2sint-sin2t) 其中r是圆的半径。曲线的尖点位于(r,0)。在极坐标系中的方程为:ρ(θ)=2r(1-cosθ)。
免责声明:本站内容仅用于学习参考,文字信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:chuangshanghai#qq.com(把#换成@)
极坐标的形式表示:r=1+cosθ
在笛卡儿坐标系中,心脏线的参数方程为:x(t)=a(2cost-cos2t)y(t)=a(2sint-sin2t) 其中r是圆的半径。曲线的尖点位于(r,0)。在极坐标系中的方程为:ρ(θ)=2r(1-cosθ)。
抱歉,评论功能暂时关闭!