An=((n+1)-n)/n*(n+1)=1/n-1/(n+1)、An=1/n*(n+k)k为常数,给分子分母同乘以k,即duAn=k/k*n*(n+k)=(1/k)*(n+k-n)/(n*(n+k))=(1/k)*(1/n-1/(n+k))、An=1/n*(n+k)(n+2k)。
裂项相消公式:
(1)1/[n(n+1)]=(1/n)-[1/(n+1)]
(2)1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]
(3)1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}
(4)1/(√a+√b)=[1/(a-b)](√a-√b)
(5)n·n!=(n+1)!-n!
(6)1/[n(n+k)]=1/k[1/n-1/(n+k)]
(7)1/[√n+√(n+1)]=√(n+1)-√n
(8)1/(√n+√n+k)=(1/k)·[√(n+k)-√n]
2
裂项相消的例子
[例]求数列an=1/n(n+1)的前n项和.
解:设an=1/n(n+1)=1/n-1/(n+1)(裂项)
则Sn=1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)
=1-1/(n+1)
=n/(n+1)。
免责声明:本站内容仅用于学习参考,文字信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:chuangshanghai#qq.com(把#换成@)