最新 高斯牛顿迭代法 高斯一牛顿迭代法(Gauss-Newtoniterationmethod)是非线性回归模型中求回归参数进行最小二乘的一种迭代方法,该法使用泰勒级数展开式去近似地代替非线性回归模型,然后通过多次迭代,多次修正回归系数,使回归系数不断逼近非线性回归模型的优秀回归系数,最后使原模型的残差平方和达到最小。 其直观思想是先选取一个参数向量的参数值β,若函数ft(Xt,β)在β0附近有连续二阶偏导数... 2025-08-27 4